Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutrition

Authors

  • Fernanda Rodrigues Goulart Universidade Federal do Pampa. Uruguaiana, Rio Grande do Sul. Brasil. https://orcid.org/0000-0001-6096-0132
  • Marina Osmari Dalcin Universidade Federal de Santa Maria. Santa Maria, Rio Grande do Sul. Brasil. https://orcid.org/0000-0003-1922-1607
  • Naglezi de Menezes Lovatto Universidade Federal de Santa Maria. Santa Maria, Rio Grande do Sul. Brasil.
  • Ana Betine Beutinger Bender Universidade Federal de Santa Maria. Santa Maria, Rio Grande do Sul. Brasil. https://orcid.org/0000-0001-6973-9127
  • Leila Picolli da Silva Universidade Federal de Santa Maria. Santa Maria, Rio Grande do Sul. Brasil. https://orcid.org/0000-0002-1721-094X
  • Alexandra Pretto Universidade Federal do Pampa. Uruguaiana, Rio Grande do Sul. Brasil. https://orcid.org/0000-0002-5874-9108

DOI:

https://doi.org/10.35699/2447-6218.2020.18926

Keywords:

β-glucan mannan, Fish feeds, Linseed, Mucilage, Pectin

Abstract

Dietary fibers are formed by non-starch polysaccharides as cellulose, hemicellulose, pectins, gums, mucilages, β-glucans, among others. These constituents have prebiotic properties and are therefore not digested in the gut, reaching intact in the colon and altering the microflora of the colon. In developing, beneficial microflora produces physiological effects capable of improving the life of the host. Thus, the knowledge of the biological and functional properties of dietary fibers has led to the development of methods of obtaining these compounds for possible use in animal nutrition. Then, this study aimed to obtain dietary fiber concentrates (DFC) from different agro-industrial sources and evaluate their respective chemical composition and physicochemical properties. The DFC - mucilage, pectin, and βglucan + mannan (βG+M) were obtained from linseed, citrus pulp, and brewer’s yeast (Saccharomyces cerevisiae), respectively, through different physicochemical processes. The chemical composition revealed that the predominant component in all DFC were dietary fiber and the insoluble fraction. The DFC that obtained most extraction yield was βG+M (19.81% ± 8.54), followed by pectin (14.54% ± 2.72), and mucilage (7.18% ± 1.54). The mucilage and pectin composition have greater monosaccharide diversity since the βG+M consisted primarily of mannose (74.5%) and glucose (24.3%). The pectin showed numerically lower hydration capacity than the other DFC. For the oil binding ability, all DFC had similar values. In this study, the DFC presented nutritional and technological characteristics that indicate potential application of the agro-industrial sources as a prebiotic for fish supplementation.

References

Abdul-Hamid, A.; Luan, Y. S. 2000. Functional properties of dietary fibre prepared from defatted rice bran. Food Chemistry, 68: 15-19. Doi: https://doi.org/10.1016/S0308-8146(99)00145-4.

Adorian, T.J.; Mombach, P.I.; Pianesso, D.; Loureiro, B.B.; Lovatto, N.M.; Goulart, F.R.; Telles, Y.T.; Macedo, M.; Silva, L.P. 2019. Evaluation of immune response and performance of silver catfish fed functional linseed fibres in response to hypoxia stress. Aquaculture Ressearch, 50:3060–3069. Doi: 10.1111/are.14266.

AOAC. 1995. Association of Official Analytical Chemists. Official Methods of Analyses of the AOAC International. 16. ed. Suplement 1998. Washington: AOAC.

AOAC. (Association of Official Analytical Chemists). Official methods of analysis. 15.ed. Washington: AOAC, 1990.

Bach Knudsen, K. E. 2001. The nutritional significance of “dietary fibre” analyses. Animal Feed Science and Technology, 90: 3-20. Doi: https://doi.org/10.1016/S0377-8401(01)00193-6.

Bemiller, J. N.; Huber, K. C. Carboidratos. p.75-130. In: Damodaran, S.; Parkin, K. L.; Fennema, O. R. 2010. Química de Alimentos de Fennema. 4. ed. Porto Alegre: Artmed.

Biermann, C. J. Hydrolysis and the other cleavage of glycosidic linkages. p.27-41. In: Biermann, C. J.; Mcginnis, G. D. 1989. Analysis of Carbohydrates by GLC and MS. Florida: CRC Press.

Bligh, E. G.; Dyer, W. J. 1959. Rapid method of total lipid extraction and purification. Journal of Biochemistry and Physiology, 37:911-917. Available in: https://www.nrcresearchpress.com/doi/pdf /10.1139/o59-099.

Blumenkrantz, N.; Asboe-Hansen, G. 1973. New method for quantitative determination of uronic acids. Analytical Biochemistry, 54: 484-489. Doi: https://doi.org/10.1016/0003-2697(73)90377-1.

Brito, M. S.; Oliveira, C. F. S.; Silva, T. R. G.; Lima, R. B.; Morais, S. N.; Silva, J. H. V. 2008. Polissacarídeos não amiláceos na nutrição de monogástricos – revisão. Acta Veterinária Brasilica, 2: 111-117. Doi: https://doi.org/10.21708/avb.2008.2.4.917.

Calliari, C. M. 2015. Pectina cítrica: extração e propriedades tecnológicas. Berlim: Novas Edições Acadêmicas.

Canteri, M. H. G.; Moreno, L.; Wosiacki, G.; Scheer, A. P. 2012. Pectina: da matéria-prima ao produto final. Polímeros, 22: 149-157. Doi: http://dx.doi.org/10.1590/S0104-14282012005000024.

Catalani, L. A.; Kang, E. M. S.; Dias, M. C. G.; Maculevicius, J. 2003. Fibras alimentares. Revista Brasileira de Nutrição Clínica, 18:178-182.

Chaud, S. G.; Sgarbieri, V. C. 2006. Propriedades funcionais (tecnológicas) da parede celular de leveduras da fermentação alcoólica e das frações glicana, manana e glicoproteína. Ciência e Tecnologia de Alimentos, 26: 369-379. Doi: http://dx.doi.org/10.1590/S0101-20612006000200020.

Chaud, S. G.; Sgarbieri, V. C.; Vicente, E.; Silva, N.; Alves, A. B.; Mattos, J. A. R. 2007. Influência de frações da parede celular de levedura (Saccharomyces cerevisiae) sobre os índices séricos de glicose e lipídios, microbiota intestinal e produção de ácidos graxos voláteis (AGV) de cadeias curtas de ratos em crescimento. Ciência e Tecnologia de Alimentos, 27: 338-348. Doi: http://dx.doi.org/10.1590/S0101-20612007000200023.

Chen, H.; Rubenthaler, G. L.; Leung, H. K.; Baranowski, J. D. 1988. Chemical, physical, and baking properties of apple fiber compared with wheat and oat bran. Cereal Chemistry, 65: 244-247. Disponível em: https://pdfs.semanticscholar.org/6b16/5829aab10a1d354d2c964342e0471788ab84.pdf.

Cui, W.; Mazza, G.; Oomah, B. D.; Biliaderis, C. G. 1994. Optimization of an aqueous extraction process for flaxseed gum by response surface methodology. Food Science and Technology, 27: 363-369. Doi: https://doi.org/10.1006/fstl.1994.1074.

Cui, W.; Mazza, G. Phvsicochemical characteristics of flaxseed gum. 1996. Food Research International, 29: 97-402. Doi: https://doi.org/10.1016/0963-9969(96)00005-1.

FAO. 2014. Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture. Rome, 243p.

Fedeniuk, R. W.; Biliaderis, C. G. 1994. Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage. Journal of Agricultural and Food Chemistry, 42: 240-247. Doi: https://doi.org/10.1021/jf00038a003.

Goulart, F. R.; Speroni, C. S.; Lovatto, N. M.; Loureiro, B. B.; Corrêia, V.; Radünz Neto, J.; Silva, L. P. 2013. Atividade de enzimas digestivas e parâmetros de crescimento de juvenis de jundiá (Rhamdia quelen) alimentados com farelo de linhaça in natura e demucilada. Semina: Ciências Agrárias, 34: 3069-3080. Doi: 10.5433/1679-0359.2013v34n6p3069.

Goulart, F.R.; da Silva, L.P.; Loureiro, B.B.; Adorian, T.J.; Mombach, P.I.; Petkowicz, C.L.O. 2017. Effects of Dietary Fibre Concentrates on growth performance and digestive enzyme activities of jundiá (Rhamdia quelen). Aquaculture Nutrition, 23:358–366. Doi: 10.1111/anu.12400 (a)

Goulart, F. R.; Adorian, T. J.; Lovatto, N. M.; Lloureiro, B. B.; Pianesso, D.; Barcellos, L.G.; Koakoski, G.; da Silva, L. P. 2017. Effect of supplementation of dietary fibre concentrates on biochemical parameters, stress response, immune response and skin mucus of jundiá (Rhamdia quelen). Aquaculture Nutrition, 1: 1-6. Doi: https://doi.org/10.1111/anu.12568. (b)

Hotchkiss, A. T. Jr.; Olano-Martin, E.; Grace, W. E.; Ribson, G. R.; Rastall, R. A. 2003. Pectic oligosaccharides as prebiotics. ACS Symposium Series, Oligosaccharides in Food and Agriculture, 849: 54-62. Doi: 10.1021/bk-2003-0849.ch005.

Kaewmanee, T.; Bagnasco, L.; Benjakul, S.; Lanteri, S.; Morelli, C. F.; Speranza, G.; Cosulich, M. E. 2014. Characterisation of mucilages extracted from seven Italian cultivars of flax. Food Chemistry, 148: 60-69. Doi: https://doi.org/10.1016/j.foodchem.2013.10.022.

Kaushik, P.; Dowling, K.; Adhikari, R.; Colin J.; Adhikari, B. 2017. Effect of extraction temperature on composition, structure and functional properties of flaxseed gum. Food Chemistry, 215:333–340.

Kliemann, E.; De Simas, K. N.; Amante, E. R.; Prudêncio, E. S.; Teófilo, R. F.; Ferreira, M. M. C.; Amboni, R. D. M. 2009. Optimisation of pectin acid extraction from passion fruit peel (Passiflora edulis flavicarpa using response surface methodology. International Journal of Food Science and Technology, 44: 476-483. Doi: https://doi.org/10.1111/j.1365-2621.2008.01753.x.

Macagnan, F. T.; Bender, A. B. B.; Speroni, C. S.; Silva, L. P. 2014. Propriedades físico-químicas de subprodutos do processamento de frutas e hortaliças. Revista Magistra, 26:2165-2169, 2014.

Mcconnel, L. A. A.; Eastwood, M. A.; Mitchell, W. D. 1974. Physical characteristics of vegetable foodstuffs that could influence bowel function. Journal of Science of Food and Agriculture, 25: 1457-1464. Doi: https://doi.org/10.1002/jsfa.2740251205.

Magnani, M.; Castro-Gómez, R. J. H. 2008. β-glucana from Saccharomyces cerevisiae: constitution, bioactivity and obtaining. Semina: Ciências Agrárias, 29: 631-650. Doi: http://dx.doi.org/10.5433/1679-0359.2008v29n3p631.

Meurer, F.; Hayashi, C. 2003. Polissacarídeos não amiláceos na nutrição de peixes - revisão. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, 6: 127-138. Doi: https://doi.org/10.25110/arqvet.v6i2.2003.805.

Monego, M. 2009. Goma da linhaça (linum usitatissimum l.) para uso como hidrocolóide na indústria alimentícia. Santa Maria: Universidade Federal de Santa Maria, 87 f. Dissertação. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/5661/MONEGO%2c%20MAGDA%20AITA.pdf?sequence=1&isAllowed=y.

Montagne, L.; Pluske, J. R.; Hampson, D. J. A. 2003. Review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108: 95–117. Doi: https://doi.org/10.1016/S0377-8401(03)00163-9.

Mudgil, D.; Barak, S. 2013. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules, 61: 1-6. Doi: 10.1016/j.ijbiomac.2013.06.044.

Müller-Maatsch, J.; Bencivenni, M.; Caligiani, M.; Tedeschi, T.; Bruggeman, G.; Bosch, M.; Petrusan, J.; Droogenbroeck, B. V.; Elst, K.; Sforza, S. 2016. Pectin content and composition from different food waste streams. Food Chemistry, 201: 37-45. Doi: https://doi.org/10.1016/j.foodchem.2016.01.012.

Névoa, M. L.; Caramori Jr., J. G.; Vieites, F. M.; Nunes, R. V.; Vargas Junior, J. G.; Kamimura, R. 2013. Antimicrobianos e prebióticos nas dietas de animais não ruminantes. Scientia Agraria Paranaensis, 12: 85-95. Doi: http://dx.doi.org/10.1818/sap.v12i2.6619.

Oomah, B. D.; Kenaschuk, E. O.; Cui, W.; Mazza, G. 1995. Variation in the composition of water-soluble polysaccharides in flaxseed. Journal of Agriculture and Food Chemistry, 43: 1484-1488. Doi: https://doi.org/10.1021/jf00054a013.

Pinto, M.M. 2012. Caraterização dos polissacarídeos da levedura cervejeira excedentária. Aveiro: Universidade de Aveiro, 108 f. Dissertação. Disponível em: https://ria.ua.pt/bitstream/10773/11015/1/6498.pdf.

Puupponen-Pimiär, A. M.; Aura, A. M.; Oksman-Caldentey, K. M.; Myllärinen, P.; Saarela, M.; Mattila-Sandholm, T.; Poutanen, K. 2002. Development of functional ingredients for gut health. Trends in Food Science and Technology, 13: 3-11. Doi: https://doi.org/10.1016/S0924-2244(02)00020-1.

Qian, K. Y.; Cui, S. W.; Wu, Y.; Goff, H. D. 2012. Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocolloid, 28: 275-283. Doi: https://doi.org/10.1016/j.foodhyd.2011.12.019.

Ringo, E.; Olsen, R. E.; Gifstad, T. O.; Dalmo, R. A.; Amlund, H.; Hemre, G. I.; Bakke, A. M. 2010. Prebiotics in Aquaculture: a review. Aquaculture Nutrition, 16: 117-136. Doi: https://doi.org/10.1111/j.1365-2095.2009.00731.x.

Saad, S. M. I. 2006. Probióticos e prebióticos: o estado da arte. Revista Brasileira de Ciências Farmacêuticas, 42: 1-16. Doi: http://dx.doi.org/10.1590/S1516-93322006000100002.

Sinha, A. K.; Kumar, V.; Makkar, H. P. S.; De Boeck, G.; Becker, K. 2011. Non-starch polysaccharides and their role in fish nutrition – A review. Food Chemistry, 27: 1409-1426. Doi: https://doi.org/10.1016/j.foodchem.2011.02.042.

Souza, M. W. S.; Ferreira, T. B. O.; Vieira, I. F. R. 2008. Composição centesimal e propriedades funcionais tecnológicas da farinha da casca do maracujá. Alimentos e Nutrição, 19: 33-36. Disponível em: http://200.145.71.150/seer/index.php/alimentos/article/viewPDFInterstitial/197/202.

Tavernari, F. C.; Carvalho, T. A.; Assis, A. P.; Lima, H. J. D-A. 2008. Polissacarídeo não amiláceo solúvel na dieta de suínos e aves. Revista Eletrônica Nutritime, 5:673-689. Disponível em: https://www.nutritime.com.br/arquivos_internos/artigos/068V5N5P673_689_SET2008_.pdf.

Torrecillas, S.; Montero, D.; Izquierdo, M. 2014. Improved health and growth of fish fed mannan oligosaccharides: Potential mode of action. Fish Shellfish Immunology, 36: 525-544. Doi: https://doi.org/10.1016/j.fsi.2013.12.029.

Wenk, C. 2001. The role of dietary fibre in the digestive physiology of the pig. Animal Feed Science and Technology, 90: 21-33. Doi: https://doi.org/10.1016/S0377-8401(01)00194-8.

Wolfrom, M. L.; Thompson, A. 1963a. Acetylation. Methods in Carbohydrate Chemistry, 2: 211-215.

Wolfrom, M. L.; Thompson, A. 1963b. Reduction with sodium borohydride. Methods in Carbohydrate Chemistry, 2: 65-68.

Zaragoza, M. L. Z.; Pérez, R. M.; Navarro, Y. T. G. 2001. Propiedades funcionales y metodologia para su evaluación em fibra dietética. p. 195-209. In: Lajolo, F. M. Fibra dietética em Iberoamérica: Tecnologia Y Salud. São Paulo: Livraria Varela.

Downloads

Published

2020-04-06

Issue

Section

Research Papers

How to Cite

Characterization and physicochemical properties of dietary fiber concentrates as potential prebiotic ingredients for use in fish nutrition. (2020). Agrarian Sciences Journal, 12, 1-9. https://doi.org/10.35699/2447-6218.2020.18926
Share |

Similar Articles

1-10 of 325

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)